有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。
translated by 谷歌翻译
Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
A statistical ensemble of neural networks can be described in terms of a quantum field theory (NN-QFT correspondence). The infinite-width limit is mapped to a free field theory, while finite N corrections are mapped to interactions. After reviewing the correspondence, we will describe how to implement renormalization in this context and discuss preliminary numerical results for translation-invariant kernels. A major outcome is that changing the standard deviation of the neural network weight distribution corresponds to a renormalization flow in the space of networks.
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
Advancements in reinforcement learning (RL) have inspired new directions in intelligent automation of network defense. However, many of these advancements have either outpaced their application to network security or have not considered the challenges associated with implementing them in the real-world. To understand these problems, this work evaluates several RL approaches implemented in the second edition of the CAGE Challenge, a public competition to build an autonomous network defender agent in a high-fidelity network simulator. Our approaches all build on the Proximal Policy Optimization (PPO) family of algorithms, and include hierarchical RL, action masking, custom training, and ensemble RL. We find that the ensemble RL technique performs strongest, outperforming our other models and taking second place in the competition. To understand applicability to real environments we evaluate each method's ability to generalize to unseen networks and against an unknown attack strategy. In unseen environments, all of our approaches perform worse, with degradation varied based on the type of environmental change. Against an unknown attacker strategy, we found that our models had reduced overall performance even though the new strategy was less efficient than the ones our models trained on. Together, these results highlight promising research directions for autonomous network defense in the real world.
translated by 谷歌翻译
In this work, we focus on the problem of safe policy transfer in reinforcement learning: we seek to leverage existing policies when learning a new task with specified constraints. This problem is important for safety-critical applications where interactions are costly and unconstrained policies can lead to undesirable or dangerous outcomes, e.g., with physical robots that interact with humans. We propose a Constrained Markov Decision Process (CMDP) formulation that simultaneously enables the transfer of policies and adherence to safety constraints. Our formulation cleanly separates task goals from safety considerations and permits the specification of a wide variety of constraints. Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation. We devise a dual optimization algorithm that estimates the optimal dual variable of a target task, thus enabling safe transfer of policies derived from successor features learned on source tasks. Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
translated by 谷歌翻译
本文提出了秤,这是一个一般框架,将公平原则转化为基于约束马尔可夫决策过程(CMDP)的共同表示。借助因果语言,我们的框架可以在决策过程(程序公平)以及决策(结果公平)产生的结果上构成限制。具体而言,我们表明可以将众所周知的公平原理编码为实用程序组件,非毒性组件或鳞片中心中的因果分量。我们使用涉及模拟医疗方案和现实世界中Compas数据集的一组案例研究来说明量表。实验表明,我们的框架产生了公平的政策,这些政策在单步和顺序决策方案中体现了替代公平原则。
translated by 谷歌翻译
关于无监督的域适应性(UDA)的广泛研究已将有限的实验数据集深入学习到现实世界中无约束的领域。大多数UDA接近通用嵌入空间中的对齐功能,并将共享分类器应用于目标预测。但是,由于当域差异很大时可能不存在完全排列的特征空间,因此这些方法受到了两个局限性。首先,由于缺乏目标标签监督,强制域的比对会恶化目标域的可区分性。其次,源监督分类器不可避免地偏向源数据,因此它在目标域中的表现可能不佳。为了减轻这些问题,我们建议在两个集中在不同领域的空间中同时进行特征对齐,并为每个空间创建一个针对该域的面向域的分类器。具体而言,我们设计了一个面向域的变压器(DOT),该变压器(DOT)具有两个单独的分类令牌,以学习不同的面向域的表示形式和两个分类器,以保持域的可区分性。理论保证的基于对比度的对齐和源指导的伪标签细化策略被用来探索域名和特定信息。全面的实验验证了我们的方法在几个基准上实现了最先进的方法。
translated by 谷歌翻译
研究兴趣大大增加了将数据驱动方法应用于力学问题的问题。尽管传统的机器学习(ML)方法已经实现了许多突破,但它们依赖于以下假设:培训(观察到的)数据和测试(看不见)数据是独立的且分布相同的(i.i.d)。因此,当应用于未知的测试环境和数据分布转移的现实世界力学问题时,传统的ML方法通常会崩溃。相反,分布(OOD)的概括假定测试数据可能会发生变化(即违反I.I.D.假设)。迄今为止,已经提出了多种方法来改善ML方法的OOD概括。但是,由于缺乏针对OOD回归问题的基准数据集,因此这些OOD方法在主导力学领域的回归问题上的效率仍然未知。为了解决这个问题,我们研究了机械回归问题的OOD泛化方法的性能。具体而言,我们确定了三个OOD问题:协变量移位,机制移位和采样偏差。对于每个问题,我们创建了两个基准示例,以扩展机械MNIST数据集收集,并研究了流行的OOD泛化方法在这些机械特定的回归问题上的性能。我们的数值实验表明,在大多数情况下,与传统的ML方法相比,在大多数情况下,在这些OOD问题上的传统ML方法的性能更好,但迫切需要开发更强大的OOD概括方法,这些方法在多个OOD场景中有效。总体而言,我们希望这项研究以及相关的开放访问基准数据集将进一步开发用于机械特定回归问题的OOD泛化方法。
translated by 谷歌翻译
我们提出了GLIPV2,这是一个接地的VL理解模型,该模型既服务于本地化任务(例如,对象检测,实例分割)和视觉语言(VL)理解任务(例如VQA,图像字幕)。 GLIPV2优雅地将本地化预训练和视觉语言预训练(VLP)具有三个预训练任务:短语接地作为对检测任务的VL重新重新制定,区域词对比度学习作为新型的区域词对比度对比度对比学习任务,以及蒙面的语言建模。这种统一不仅简化了先前的多阶段VLP程序,而且还可以在本地化和理解任务之间实现相互利益。实验结果表明,在各种本地化和理解任务上,单个GLIPV2模型(所有模型权重)在SOTA性能附近实现。该模型还显示了(1)在开放式摄制对象检测任务上进行的强零射击和很少的自适应性能,以及(2)VL理解任务上的卓越接地能力。代码将在https://github.com/microsoft/glip上发布。
translated by 谷歌翻译